Loading…
Random Forest for Human Daily Activity Recognition
Machine learning classifiers are often used to evaluate the predicting accuracy of human activity recognition. This study aimed to evaluate the performance of random forest (RF) compared to other classifiers with considering the time taken to build the models. Human activity daily living data, namel...
Saved in:
Published in: | Journal of physics. Conference series 2020-10, Vol.1655 (1), p.12087 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning classifiers are often used to evaluate the predicting accuracy of human activity recognition. This study aimed to evaluate the performance of random forest (RF) compared to other classifiers with considering the time taken to build the models. Human activity daily living data, namely walking, walking upstairs, walking downstairs, sitting, standing, and lying down were collected from smartphone-based accelerometer with sampling frequency of 50Hz. The dataset was evaluated using artificial neural network (ANN), k-nearest neighbors (KNN), linear discriminant analysis (LDA), naïve Bayes (NB), support vector machine (SVM), and random forest (RF). The results of the study showed that RF indeed predicted the activities with the highest accuracy. However, the time taken to build the models using RF was the second-longest after ANN. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1655/1/012087 |