Loading…

On the seven-diagonals splitting for the cubic spline wavelets with six vanishing moments on an interval

This study uses a zeroing property of the first six moments for constructing a splitting algorithm for the cubic spline wavelets. First, we construct a system of cubic basic spline-wavelets, realizing orthogonal conditions to all polynomials up to any degree. Then, using the homogeneous Dirichlet bo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-12, Vol.2099 (1), p.12016
Main Author: Shumilov, B M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study uses a zeroing property of the first six moments for constructing a splitting algorithm for the cubic spline wavelets. First, we construct a system of cubic basic spline-wavelets, realizing orthogonal conditions to all polynomials up to any degree. Then, using the homogeneous Dirichlet boundary conditions, we adapt spaces to the orthogonality to all polynomials up to the fifth degree on the closed interval. The originality of the study consists of obtaining implicit finite relations connecting the coefficients of the spline decomposition at the initial scale with the spline coefficients and wavelet coefficients at the nested scale by a tape system of linear algebraic equations with a non-degenerate matrix. After excluding the even rows of the system, the resulting transformation matrix has seven diagonals, instead of five as in the previous case with four zero moments. A modification of the system is performed, which ensures a strict diagonal dominance, and, consequently, the stability of the calculations. The comparative results of numerical experiments on approximating and calculating the derivatives of a discrete function are presented.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2099/1/012016