Loading…
Numerical modeling of multiphase mass transfer processes in fractured-porous reservoirs
The paper presents an algorithm for solving the problem of the process of mass transfer of a two-phase fluid in a fractured-porous reservoir in a one-dimensional formulation. The presence of natural fractures in such reservoirs impedes various types of exploration and field development. Fractured-po...
Saved in:
Published in: | Journal of physics. Conference series 2021-12, Vol.2131 (2), p.22002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents an algorithm for solving the problem of the process of mass transfer of a two-phase fluid in a fractured-porous reservoir in a one-dimensional formulation. The presence of natural fractures in such reservoirs impedes various types of exploration and field development. Fractured-porous reservoirs are characterized by intense exchange fluid flow between fractures and porous blocks. Each system has its own individual set of filtration-capacity parameters, and this fact complicates the problem under consideration. To study the mass transfer of a two-phase fluid in a medium with double porosity, a four-block mathematical model with splitting by physical processes is proposed. The model is described by a system of partial differential equations. The splitting method forms two functional blocks on the water saturation and the piezoconductivity. For the numerical solution of this system, an absolutely stable implicit finite-difference scheme is constructed in the one-dimensional case. On the basis of the proposed difference scheme, pressures and saturations in the fracture system and matrix are obtained. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2131/2/022002 |