Loading…

Numerical Simulation of Cavitation and Hydrodynamic Characteristics of Supercavitating Projectiles in the Shear Flow

To investigate the cavitation and hydrodynamic characteristics of supercavitating projectiles in the shear flow, the Mixture multiphase and Schnerr-Sauer cavitation models are employed to simulate the underwater projectiles. The inflow average velocity is 600 m/s, and the shear rates range from 0 to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-06, Vol.2478 (11), p.112027
Main Authors: Yuan, Xin, Zhao, Zijie, Zhou, Biaojun, Dai, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the cavitation and hydrodynamic characteristics of supercavitating projectiles in the shear flow, the Mixture multiphase and Schnerr-Sauer cavitation models are employed to simulate the underwater projectiles. The inflow average velocity is 600 m/s, and the shear rates range from 0 to 7500 s −1 . In the uniform flow, the supercavity enveloping projectiles is vertically symmetrical. The drag is dominated by pressure drag, and the lift coefficient is 0. However, the supercavity is asymmetric in the shear flow, which deviates towards the low-speed side of projectiles. This is because the flow around projectiles runs faster on the high-speed side, and the vortices on the low-speed side entrain more fluid from the high-speed side. Thus, the projectiles suffer from normal shear stress orientating towards the low-speed side, and the lift coefficient turns negative. When the shear rate further increases, the projectile shoulder contacts water on the high-speed side, and the viscosity around projectiles is enhanced, resulting in the significant augmentation of the drag coefficient. As the water pressure is strongly larger than saturated vapor pressure on the low-speed side, the normal component of pressure acts more intensely towards the low-speed side of projectiles, and the lift coefficient is further decreased.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2478/11/112027