Loading…

First Principle Study on Schottky Barrier at Ni/Graphene/4H-SiC Interface

High stability 4H-SiC ohmic contact is currently a key technical challenge that silicon carbide devices urgently need to overcome. It is important to reduce the Schottky barrier height (SBH) at the Ni/4H-SiC interface to optimize ohmic contact. In this paper, the mechanisms of graphene layer changin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-03, Vol.2737 (1), p.12005
Main Authors: Wang, Congcong, Jiang, Zhenyu, Huang, Yingjie, Wu, Siyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High stability 4H-SiC ohmic contact is currently a key technical challenge that silicon carbide devices urgently need to overcome. It is important to reduce the Schottky barrier height (SBH) at the Ni/4H-SiC interface to optimize ohmic contact. In this paper, the mechanisms of graphene layer changing Ni/4H-SiC interface Schottky barrier height (SBH) are studied based on the first-principles method within the local density approximation. Theoretical studies have shown that graphene intercalation can reduce the SBH of Ni and 4H-SiC interfaces. The reason of SBH reduction may be that the graphene C atoms saturate the dangling bonds on the 4H-SiC surface and the influence of the metal-induced energy gap state at the interface is reduced. In addition, the new phase formed at the interface of graphene and silicon carbide has a lower work function. Furthermore, an interfacial electric dipole layer may be formed at the 4H-SiC/graphene interface which may also reduce the SBH. These results make them to be promising candidates for future radiation resistant electronics.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2737/1/012005