Loading…
Contact symmetries of constrained quadratic Lagrangians
The conditions for the existence of (polynomial in the velocities) contact symmetries of constrained systems that are described by quadratic Lagrangians is presented. These Lagrangians mainly appear in mini-superspace reductions of gravitational plus matter actions. In the literature, one usually ad...
Saved in:
Published in: | Journal of physics. Conference series 2016-01, Vol.670 (1), p.12021 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The conditions for the existence of (polynomial in the velocities) contact symmetries of constrained systems that are described by quadratic Lagrangians is presented. These Lagrangians mainly appear in mini-superspace reductions of gravitational plus matter actions. In the literature, one usually adopts a gauge condition (mostly for the lapse N) prior to searching for symmetries. This, however, is an unnecessary restriction which may lead to a loss of symmetries and consequently to the respective integrals of motion. A generalization of the usual procedure rests in the identification of the lapse function N as an equivalent degree of freedom and the according extension of the infinitesimal generator. As a result, conformal Killing tensors (with appropriate conformal factors) can define integrals of motion (instead of just Killing tensors used in the regular gauge fixed case). Additionally, rheonomic integrals of motion - whose existence is unique in this type of singular systems - of various orders in the momenta can be constructed. An example of a relativistic particle in a pp-wave space-time and under the influence of a quadratic potential is illustrated. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/670/1/012021 |