Loading…

Prominent vegetation greening in spring and autumn across China during the 1981–2018 period

Vegetation greening in China has been extensively examined, but little is known about its seasonal characteristics and its association with soil moisture (SM) and temperature changes. Using high-resolution (0.1°, 8 d) datasets of leaf area index (LAI), together with SM, soil temperature (ST) dataset...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2022-12, Vol.17 (12), p.124043
Main Authors: Li, Mingxing, Wu, Peili, Ma, Zhuguo, Liu, Jiandong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vegetation greening in China has been extensively examined, but little is known about its seasonal characteristics and its association with soil moisture (SM) and temperature changes. Using high-resolution (0.1°, 8 d) datasets of leaf area index (LAI), together with SM, soil temperature (ST) datasets, and the dominance analysis method, this study is designed to detect seasonal vegetation changes across China during 1981–2018 and its links to climate change. The results show that 56.8% of land area across China experienced a greening trend while 6.6% browning trend through 1981–2018. LAI increasing area expanded to a maximum of 59.3% in spring and the decreasing area reached a maximum of 10.6% in autumn. Spring increases in LAI in main vegetation regions were significantly correlated with positive ST anomalies, while autumn decreases in LAI except sparsely vegetated regions were correlated with negative SM anomalies. Combined SM and temperature anomalies explain 10.9% of the observed LAI changes, which is 4 times larger than that directly explained by precipitation and surface air temperature (2.7%). The warming of soil under climate change was driving the LAI increases, while drying was largely responsible for LAI decreases. These findings provide further evidence of climate change impacts on regional ecosystems and highlight the importance of soil heat and water conditions in translating global warming signals.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aca8be