Loading…
Test of a DC-HTS Busbar Demonstrator for Power Distribution in Hybrid-Electric Propulsion Systems for Aircraft
In the framework of the German project TELOS (Thermo-Electrically Optimised Aircraft Propulsion Systems) a high-temperature superconducting 40 MVA DC demonstrator busbar for hybrid-electric propulsion systems for aircraft has been developed. The design current for a temperature below 25 K is 13.3 kA...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2022-05, Vol.1241 (1), p.12037 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the framework of the German project TELOS (Thermo-Electrically Optimised Aircraft Propulsion Systems) a high-temperature superconducting 40 MVA DC demonstrator busbar for hybrid-electric propulsion systems for aircraft has been developed. The design current for a temperature below 25 K is 13.3 kA and the rated voltage is 3 kV. The 2-pole busbar contains 2 stacks of REBCO coated conductors which are supported by a 3D-printed structure allowing compensation of thermal length changes of the superconductor. It fits in a cryostat tube with an inner diameter of 25 mm. A special focus has been put on low-resistive joints that are necessary to connect single elements of the busbar system. The special layout of the joints allows an effective current redistribution between the different tapes in a stack. We present results for the test of the DC busbar demonstrator in liquid nitrogen at 77 K. The design current for this temperature is 3.3 kA which corresponds to a rated power of 10 MW. We applied currents up to 3.5 kA and measured the I-V characteristics and contact resistances of 90° and 180° joints in a virgin and in a strained state thus simulating thermal length changes. We also present results of Lorentz-Force tests with short AC current pulses up to 20 kA to demonstrate the viability of the design for application with currents up to 13.3 kA. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/1241/1/012037 |