Loading…
Adsorption Studies of Gadolinium ion on Graphitic Carbon Nitride
Bulk graphitic carbon nitride (g-C3N4) is synthesized by thermal decomposition of urea and used as an adsorbent for gadolinium ion (Gd3+) from aqueous solution. Adsorption capacity of g-C3N4 is found to be influenced by initial Gd3+ concentration, solution pH and contact time. Adsorbed Gd3+is separa...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2018-03, Vol.338 (1), p.12006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bulk graphitic carbon nitride (g-C3N4) is synthesized by thermal decomposition of urea and used as an adsorbent for gadolinium ion (Gd3+) from aqueous solution. Adsorption capacity of g-C3N4 is found to be influenced by initial Gd3+ concentration, solution pH and contact time. Adsorbed Gd3+is separated from g-C3N4 by ultracentrifuge. Initial and Gd ion accumulated g-C3N4 adsorbent are characterized by X-ray diffraction technique (XRD) for phase identification, UV-visible and Fourier transform infrared (FTIR) spectroscopy for adsorption characteristics and optical property, scanning electron microscopy (SEM) for morphological behaviour along with energy dispersive X-ray spectroscopy (EDS) for elemental study. HNO3(0.1M), NaOH (0.1M) and de-ionized water are used for desorption and around 97% quantitative recovery of Gd ion is observed. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/338/1/012006 |