Loading…
Application of Electrolyte Based Model on Ionic Liquids-Methane Hydrates Phase Boundary
In the current study, the phase behaviour of selected methane (CH4) hydrate-Ionic Liquids (ILs) systems were predicted via Dickens and Quinby-Hunt model. The model chosen is an electrolyte-based model; therefore easily accommodate ILs that are molten salts. The experimental hydrate vapour liquid Equ...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2018-12, Vol.458 (1), p.12073 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the current study, the phase behaviour of selected methane (CH4) hydrate-Ionic Liquids (ILs) systems were predicted via Dickens and Quinby-Hunt model. The model chosen is an electrolyte-based model; therefore easily accommodate ILs that are molten salts. The experimental hydrate vapour liquid Equilibrium (HLwVE) data of ILs was extracted from various literature sources for validation of the applied model. The overall predicted results suggested that the studied predictive model found in line with the experimental literature data for almost all the studied systems. The maximum deviation observed from the pyrrolidinium family of IL which also found to less than 0.67 K. Apparently it can be concluded that the selective model could applicable for accurate prediction of thermodynamic hydrate phase boundaries of methane hydrates in the presence of ILs. Since hydrate experimentations are very time-consuming, accurate thermodynamic predictions of hydrate phase are very crucial for exploring various hydrate-based technologies like flow assurance, natural gas recovery and gas storage and transportations. |
---|---|
ISSN: | 1757-8981 1757-899X 1757-899X |
DOI: | 10.1088/1757-899X/458/1/012073 |