Loading…
Time optimal quantum state transfer in a fully-connected quantum computer
The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb–Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-rang...
Saved in:
Published in: | Quantum science and technology 2024-01, Vol.9 (1), p.15014 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb–Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new quantum brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer. |
---|---|
ISSN: | 2058-9565 2058-9565 |
DOI: | 10.1088/2058-9565/ad0770 |