Loading…

Security of partially corrupted quantum repeater networks

Quantum Key Distribution allows two parties to establish a secret key that is secure against computationally unbounded adversaries. To extend the distance between parties, quantum networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an adversary has comp...

Full description

Saved in:
Bibliographic Details
Published in:Quantum science and technology 2025-01, Vol.10 (1), p.15005
Main Authors: Harkness, Adrian, Krawec, Walter O, Wang, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum Key Distribution allows two parties to establish a secret key that is secure against computationally unbounded adversaries. To extend the distance between parties, quantum networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an adversary has complete control over all repeaters and fiber links in a network and is able to replace them with perfect devices, thus allowing her to hide her attack within the expected natural noise. In a large-scale network, however, such a powerful attack may be infeasible. In this paper, we analyze the case where the adversary can only corrupt a subset of the repeater network connecting Alice and Bob, while some portion of the network near Alice and Bob may be considered safe from attack (though still noisy). We derive a rigorous finite key proof of security assuming this attack model, and show that improved performance and noise tolerances are possible. Our proof methods may be useful to other researchers investigating partially corrupted quantum networks, and our main result may be beneficial to future network operators.
ISSN:2058-9565
2058-9565
DOI:10.1088/2058-9565/ad7882