Loading…
Characterization of completions of reduced local rings
We find necessary and sufficient conditions for a complete local ring to be the completion of a reduced local ring. Explicitly, these conditions on a complete local ring TT with maximal ideal m\mathfrak {m} are (i) m=(0)\mathfrak {m}=(0) or m∉AssT\mathfrak {m}\notin \operatorname {Ass} T, and (ii)...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2001-05, Vol.129 (11), p.3193-3200 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We find necessary and sufficient conditions for a complete local ring to be the completion of a reduced local ring. Explicitly, these conditions on a complete local ring TT with maximal ideal m\mathfrak {m} are (i) m=(0)\mathfrak {m}=(0) or m∉AssT\mathfrak {m}\notin \operatorname {Ass} T, and (ii) for all p∈AssT\mathfrak {p}\in \operatorname {Ass} T, if r∈pr\in \mathfrak {p} is an integer of TT, then AnnT(r)⊈p\operatorname {Ann}_{T}(r)\not \subseteq \mathfrak {p}. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-01-05962-7 |