Loading…
Uniformly bounded limit of fractional homomorphisms
We show that a bounded homomorphism T: L^1_{\omega}(\mathbb{R}^+)\to {\mathcal A} is equivalent to a uniformly bounded family of fractional homomorphisms T_{\alpha}: AC^{(\alpha)}_{\omega}(\mathbb{R}^+)\to {\mathcal A} for any \alpha>0. We add this characterization to the Widder-Arendt-Kisynski t...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2005-09, Vol.133 (9), p.2569-2575 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that a bounded homomorphism T: L^1_{\omega}(\mathbb{R}^+)\to {\mathcal A} is equivalent to a uniformly bounded family of fractional homomorphisms T_{\alpha}: AC^{(\alpha)}_{\omega}(\mathbb{R}^+)\to {\mathcal A} for any \alpha>0. We add this characterization to the Widder-Arendt-Kisynski theorem and relate it to \alpha-times integrated semigroups. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-05-07978-5 |