Loading…
Sums of entire functions having only real zeros
We show that certain sums of products of Hermite-Biehler entire functions have only real zeros, extending results of Cardon. As applications of this theorem, we construct sums of exponential functions having only real zeros, we construct polynomials having zeros only on the unit circle, and we obtai...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2007-12, Vol.135 (12), p.3857-3866 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that certain sums of products of Hermite-Biehler entire functions have only real zeros, extending results of Cardon. As applications of this theorem, we construct sums of exponential functions having only real zeros, we construct polynomials having zeros only on the unit circle, and we obtain the three-term recurrence relation for an arbitrary family of real orthogonal polynomials. We discuss a similarity of this result with the Lee-Yang Circle Theorem from statistical mechanics. Also, we state several open problems. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-07-09103-4 |