Loading…
Kenilworth
We construct a G_{\delta } \sigma -ideal \mathcal {I} of compact subsets of 2^{\omega } such that \mathcal {I} contains all the singletons but there is \emph {no} dense G_{\delta } set D \subseteq 2^{\omega } such that \{K \subseteq D \colon K\textrm { compact}} \subseteq \mathcal {I}. This answers...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2009-03, Vol.137 (3), p.1115-1125 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a G_{\delta } \sigma -ideal \mathcal {I} of compact subsets of 2^{\omega } such that \mathcal {I} contains all the singletons but there is \emph {no} dense G_{\delta } set D \subseteq 2^{\omega } such that \{K \subseteq D \colon K\textrm { compact}} \subseteq \mathcal {I}. This answers a question of A. S. Kechris in the negative. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-08-09615-9 |