Loading…
Linear maps preserving invariants
Let G\subset \mathrm {GL}(V) be a complex reductive group. Let G' denote \{\varphi \in \mathrm {GL}(V)\mid p\circ \varphi =p\text { for all }p\in \mathbb {C}[V]^G\}. We show that, ``in general'', G'=G. In case G is the adjoint group of a simple Lie algebra \mathfrak {g}, we show...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2008-12, Vol.136 (12), p.4197-4200 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G\subset \mathrm {GL}(V) be a complex reductive group. Let G' denote \{\varphi \in \mathrm {GL}(V)\mid p\circ \varphi =p\text { for all }p\in \mathbb {C}[V]^G\}. We show that, ``in general'', G'=G. In case G is the adjoint group of a simple Lie algebra \mathfrak {g}, we show that G' is an order 2 extension of G. We also calculate G' for all representations of \mathrm {SL}_2. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-08-09628-7 |