Loading…
Triangles in arrangements of lines. II
n lines in the real projective plane, no n - 1 of triangular regions formed is at most \tfrac{2}{5}n(n - 1) We also show that if n \geqslant 6 {p_3} \leqslant \tfrac{7}{{18}}n(n - 1) + \tfrac{1}{3} .]]>
Saved in:
Published in: | Proceedings of the American Mathematical Society 1980-05, Vol.79 (1), p.77-81 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | n lines in the real projective plane, no n - 1 of triangular regions formed is at most \tfrac{2}{5}n(n - 1) We also show that if n \geqslant 6 {p_3} \leqslant \tfrac{7}{{18}}n(n - 1) + \tfrac{1}{3} .]]> |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-1980-0560588-4 |