Loading…
A Generalization of A Theorem of Ayoub and Chowla
Let $\chi_1$ and $\chi_2$ be characters modulo $q_1$ and $q_2$, respectively, where $q_1$ and $q_2$ are positive integers. Let $$f(n) = \sum_{d\mid n} \chi_1(d)\chi_2(n/d).$$ In this paper we shall give an estimate for the sum $$\sum_{n \leq x} f(n)\log(x/n).$$
Saved in:
Published in: | Proceedings of the American Mathematical Society 1982-12, Vol.86 (4), p.574-580 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $\chi_1$ and $\chi_2$ be characters modulo $q_1$ and $q_2$, respectively, where $q_1$ and $q_2$ are positive integers. Let $$f(n) = \sum_{d\mid n} \chi_1(d)\chi_2(n/d).$$ In this paper we shall give an estimate for the sum $$\sum_{n \leq x} f(n)\log(x/n).$$ |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/s0002-9939-1982-0674083-7 |