Loading…
Quadratic Forms, Rigid Elements and Nonreal Preorders
A nonreal preorder of a quaternionic structure q: G × G → B is a subgroup$T \subseteq G$such that -1 ∈ T and -1 ≠ t ∈ T implies$D\langle 1, t \rangle \subseteq T$. The basic part of q is defined to be the set$B = \{\pm1 \} \cup \{a \in G\mid a\quad\text{is not 2-sided rigid}\quad\}$. A. Carson and M...
Saved in:
Published in: | Proceedings of the American Mathematical Society 1983-06, Vol.88 (2), p.201-204 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nonreal preorder of a quaternionic structure q: G × G → B is a subgroup$T \subseteq G$such that -1 ∈ T and -1 ≠ t ∈ T implies$D\langle 1, t \rangle \subseteq T$. The basic part of q is defined to be the set$B = \{\pm1 \} \cup \{a \in G\mid a\quad\text{is not 2-sided rigid}\quad\}$. A. Carson and M. Marshall have shown that if$|G| < \infty$then every nontrivial nonreal preorder T must contain B. The main purpose of this note is to extend this result by replacing$|G| < \infty$with$\lbrack G: T \rbrack < \infty$. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-1983-0695240-0 |