Loading…
A result about the Hilbert transform along curves
Let GG be a connected and simply connected, nilpotent Lie group and let γ:(−1,1)→G\gamma :( - 1,1) \to G be a (connected) analytic curve such that γ(0)=0\gamma (0) = 0. Then the Hilbert transform along γ\gamma, \[ Tf(x)=p.v.∫0>|t|>1f(xγ(t)−1)dt/t,Tf(x) = p.v.\int _{0 > |t| > 1} {f(x\gamm...
Saved in:
Published in: | Proceedings of the American Mathematical Society 1990, Vol.110 (4), p.905-914 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let GG be a connected and simply connected, nilpotent Lie group and let γ:(−1,1)→G\gamma :( - 1,1) \to G be a (connected) analytic curve such that γ(0)=0\gamma (0) = 0. Then the Hilbert transform along γ\gamma, \[ Tf(x)=p.v.∫0>|t|>1f(xγ(t)−1)dt/t,Tf(x) = p.v.\int _{0 > |t| > 1} {f(x\gamma {{(t)}^{ - 1}})dt/t} , \] is bounded on Lp(G),1>p>∞{L^p}(G),1 > p > \infty. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-1990-1019281-2 |