Loading…

Every K(n)-local spectrum is the homotopy fixed points of its Morava module

( S. Also, we show that for all such X \pi_\ast(L_{K(n)}(X)) \pi_\ast((L_{K(n)}(E_n \wedge X))^{hG_n}).]]>

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2012-03, Vol.140 (3), p.1097-1103
Main Authors: DAVIS, DANIEL G., TORII, TAKESHI
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:( S. Also, we show that for all such X \pi_\ast(L_{K(n)}(X)) \pi_\ast((L_{K(n)}(E_n \wedge X))^{hG_n}).]]>
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-2011-11189-4