Loading…
Every K(n)-local spectrum is the homotopy fixed points of its Morava module
( S. Also, we show that for all such X \pi_\ast(L_{K(n)}(X)) \pi_\ast((L_{K(n)}(E_n \wedge X))^{hG_n}).]]>
Saved in:
Published in: | Proceedings of the American Mathematical Society 2012-03, Vol.140 (3), p.1097-1103 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ( S. Also, we show that for all such X \pi_\ast(L_{K(n)}(X)) \pi_\ast((L_{K(n)}(E_n \wedge X))^{hG_n}).]]> |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-2011-11189-4 |