Loading…
Kato's inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds
Let M be a Hermitian vector bundle with a Hermitian covariant derivative \nabla denote the Friedrichs extension of \nabla ^*\nabla /2 V:M\to \mathrm {End}(E) has a decomposition of the form V=V_1-V_2, V_1 \left \vert V_2 \right \vert, then one can define the form sum H(V):=H(0)\dotplus V \Gamma _{\m...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2014-04, Vol.142 (4), p.1289-1300 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let M be a Hermitian vector bundle with a Hermitian covariant derivative \nabla denote the Friedrichs extension of \nabla ^*\nabla /2 V:M\to \mathrm {End}(E) has a decomposition of the form V=V_1-V_2, V_1 \left \vert V_2 \right \vert, then one can define the form sum H(V):=H(0)\dotplus V \Gamma _{\mathsf {L}^2}(M,E). Applications to quantum physics are discussed. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-2014-11859-4 |