Loading…
Full groups and soficity
First, we answer a question of Giordano and Pestov by proving that the full group of a sofic equivalence relation is a sofic group. Then, we give a short proof of the theorem of Grigorchuk and Medynets that the topological full group of a minimal Cantor homeomorphism is LEF. Finally, we show that fo...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2015-05, Vol.143 (5), p.1943-1950 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First, we answer a question of Giordano and Pestov by proving that the full group of a sofic equivalence relation is a sofic group. Then, we give a short proof of the theorem of Grigorchuk and Medynets that the topological full group of a minimal Cantor homeomorphism is LEF. Finally, we show that for certain non-amenable groups all the generalized lamplighter groups are sofic. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-2014-12403-8 |