Loading…
A note on p-hyponormal operators
Let T be a p-hyponormal operator on a Hilbert space with polar decomposition T=U|T| and let \widetilde T=|T|^{t}U|T|^{r-t} for r>0 and r \geq t \geq 0. We study order and spectral properties of \widetilde {T}. In particular we refine recent Furuta's result on p-hyponormal operators.
Saved in:
Published in: | Proceedings of the American Mathematical Society 1997-12, Vol.125 (12), p.3617-3624 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let T be a p-hyponormal operator on a Hilbert space with polar decomposition T=U|T| and let \widetilde T=|T|^{t}U|T|^{r-t} for r>0 and r \geq t \geq 0. We study order and spectral properties of \widetilde {T}. In particular we refine recent Furuta's result on p-hyponormal operators. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-97-04004-5 |