Loading…

A note on p-hyponormal operators

Let T be a p-hyponormal operator on a Hilbert space with polar decomposition T=U|T| and let \widetilde T=|T|^{t}U|T|^{r-t} for r>0 and r \geq t \geq 0. We study order and spectral properties of \widetilde {T}. In particular we refine recent Furuta's result on p-hyponormal operators.

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 1997-12, Vol.125 (12), p.3617-3624
Main Author: Huruya, Tadasi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let T be a p-hyponormal operator on a Hilbert space with polar decomposition T=U|T| and let \widetilde T=|T|^{t}U|T|^{r-t} for r>0 and r \geq t \geq 0. We study order and spectral properties of \widetilde {T}. In particular we refine recent Furuta's result on p-hyponormal operators.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-97-04004-5