Loading…
Norms of embeddings of logarithmic Bessel potential spaces
Let \Omega be a subset of \mathbb{R}\sp{n} with finite volume, let \nu >0 and let \Phi be a Young function with \Phi (t) = \exp (\exp t\sp{\nu }) for large t. We show that the norm on the Orlicz space L\sb {\Phi } (\Omega ) is equivalent to \begin{equation*}\sup \sb {1
Saved in:
Published in: | Proceedings of the American Mathematical Society 1998-08, Vol.126 (8), p.2417-2425 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \Omega be a subset of \mathbb{R}\sp{n} with finite volume, let \nu >0 and let \Phi be a Young function with \Phi (t) = \exp (\exp t\sp{\nu }) for large t. We show that the norm on the Orlicz space L\sb {\Phi } (\Omega ) is equivalent to \begin{equation*}\sup \sb {1 |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-98-04327-5 |