Loading…
A mean value theorem on bounded symmetric domains
Let \Omega be a Cartan domain of rank r and genus p and B_\nu, \nu >p-1, the Berezin transform on \Omega ; the number B_{\nu }f(z) can be interpreted as a certain invariant-mean-value of a function f around~z. We show that a Lebesgue integrable function satisfying f=B_\nu f=B_{\nu +1}f=\dots =B_{...
Saved in:
Published in: | Proceedings of the American Mathematical Society 1999-11, Vol.127 (11), p.3259-3268 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \Omega be a Cartan domain of rank r and genus p and B_\nu, \nu >p-1, the Berezin transform on \Omega ; the number B_{\nu }f(z) can be interpreted as a certain invariant-mean-value of a function f around~z. We show that a Lebesgue integrable function satisfying f=B_\nu f=B_{\nu +1}f=\dots =B_{\nu +r}f, \nu \ge p, must be \mathcal{M}-harmonic. In a~sense, this result is reminiscent of Delsarte's two-radius mean-value theorem for ordinary harmonic functions on the complex n-space \mathbf{C}^{n}, but with the role of radius r played by the quantity~1/\nu . |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-99-05052-2 |