Loading…
The Commuting Block Maps Problem
A block map is a map $f: \{0, 1\}^n \rightarrow \{0, 1\}$ for some $n \leqslant 1$. A block map $f$ induces an endomorphism $f_\infty$ of the full 2-shift $(X, \sigma)$. We define composition of block maps so that ($f \circ g)_\infty = f_\infty \circ g_\infty$. The commuting block maps problem (for...
Saved in:
Published in: | Transactions of the American Mathematical Society 1979, Vol.249 (1), p.113-138 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A block map is a map $f: \{0, 1\}^n \rightarrow \{0, 1\}$ for some $n \leqslant 1$. A block map $f$ induces an endomorphism $f_\infty$ of the full 2-shift $(X, \sigma)$. We define composition of block maps so that ($f \circ g)_\infty = f_\infty \circ g_\infty$. The commuting block maps problem (for $f$) is to determine $\mathscr{C}(f) = \{g|f \circ g = g \circ f\}$. We solve the commuting block maps problem for a number of classes of block maps. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-1979-0526313-4 |