Loading…
Strictly Convex Simplexwise Linear Embeddings of a 2-Disk
Let$K \subset R^2$be a finitely triangulated 2-disk; a map f: K → R2is called simplexwise linear (SL) if f ∣ σ is affine linear for each (closed) 2-simplex σ of K. Let$E(K) = \{\text{orientation preserving} \mathrm{SL} \text{embeddings} K \rightarrow R^2\}, E_{\mathrm{sc}}(K) = \{f \in E(K) \mid f(K...
Saved in:
Published in: | Transactions of the American Mathematical Society 1985-01, Vol.288 (2), p.723-737 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let$K \subset R^2$be a finitely triangulated 2-disk; a map f: K → R2is called simplexwise linear (SL) if f ∣ σ is affine linear for each (closed) 2-simplex σ of K. Let$E(K) = \{\text{orientation preserving} \mathrm{SL} \text{embeddings} K \rightarrow R^2\}, E_{\mathrm{sc}}(K) = \{f \in E(K) \mid f(K) \text{is strictly convex}\}$, and let$\overline{E(K)}$and$\overline{E_{\mathrm{sc}}(K)}$denote their closures in the space of all$\mathrm{SL} \text{maps} K \rightarrow R^2$. A characterization of certain elements of$\overline{E(K)}$is used to prove that Esc(K) has the homotopy type of S1and to characterize those elements of$\overline{E(K)}$which are in$\overline{E_{\mathrm{sc}}(K)}$, as well as to relate such maps to SL embeddings into the nonstandard plane. |
---|---|
ISSN: | 0002-9947 |
DOI: | 10.1090/S0002-9947-1985-0776400-3 |