Loading…
Epigraphical and Uniform Convergence of Convex Functions
We examine when a sequence of lsc convex functions on a Banach space converges uniformly on bounded sets (resp. compact sets) provided it converges Attouch-Wets (resp. Painlevé-Kuratowski). We also obtain related results for pointwise convergence and uniform convergence on weakly compact sets. Some...
Saved in:
Published in: | Transactions of the American Mathematical Society 1996-04, Vol.348 (4), p.1617-1631 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examine when a sequence of lsc convex functions on a Banach space converges uniformly on bounded sets (resp. compact sets) provided it converges Attouch-Wets (resp. Painlevé-Kuratowski). We also obtain related results for pointwise convergence and uniform convergence on weakly compact sets. Some known results concerning the convergence of sequences of linear functionals are shown to also hold for lsc convex functions. For example, a sequence of lsc convex functions converges uniformly on bounded sets to a continuous affine function provided that the convergence is uniform on weakly compact sets and the space does not contain an isomorphic copy of \ell _{1}. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-96-01581-4 |