Loading…

Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-1 symmetric spaces

In this paper, we prove that for a bounded domain \Omega in a rank-1 symmetric space, the first non-zero Neumann eigenvalue \mu _{1}(\Omega )\leq \mu _{1}(B(r_{1})) where B(r_{1}) denotes the geodesic ball of radius r_{1} such that \begin{equation*}vol(\Omega )=vol(B(r_{1}))\end{equation*} and equal...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 1996-10, Vol.348 (10), p.3955-3965
Main Authors: Aithal, A. R., Santhanam, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we prove that for a bounded domain \Omega in a rank-1 symmetric space, the first non-zero Neumann eigenvalue \mu _{1}(\Omega )\leq \mu _{1}(B(r_{1})) where B(r_{1}) denotes the geodesic ball of radius r_{1} such that \begin{equation*}vol(\Omega )=vol(B(r_{1}))\end{equation*} and equality holds iff \Omega =B(r_{1}). This result generalises the works of Szego, Weinberger and Ashbaugh-Benguria for bounded domains in the spaces of constant curvature.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-96-01682-0