Loading…
Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-1 symmetric spaces
In this paper, we prove that for a bounded domain \Omega in a rank-1 symmetric space, the first non-zero Neumann eigenvalue \mu _{1}(\Omega )\leq \mu _{1}(B(r_{1})) where B(r_{1}) denotes the geodesic ball of radius r_{1} such that \begin{equation*}vol(\Omega )=vol(B(r_{1}))\end{equation*} and equal...
Saved in:
Published in: | Transactions of the American Mathematical Society 1996-10, Vol.348 (10), p.3955-3965 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove that for a bounded domain \Omega in a rank-1 symmetric space, the first non-zero Neumann eigenvalue \mu _{1}(\Omega )\leq \mu _{1}(B(r_{1})) where B(r_{1}) denotes the geodesic ball of radius r_{1} such that \begin{equation*}vol(\Omega )=vol(B(r_{1}))\end{equation*} and equality holds iff \Omega =B(r_{1}). This result generalises the works of Szego, Weinberger and Ashbaugh-Benguria for bounded domains in the spaces of constant curvature. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-96-01682-0 |