Loading…
Filtering in Legendre spectral methods
We discuss the impact of modal filtering in Legendre spectral methods, both on accuracy and stability. For the former, we derive sufficient conditions on the filter to recover high order accuracy away from points of discontinuity. Computational results confirm that less strict necessary conditions a...
Saved in:
Published in: | Mathematics of computation 2008-09, Vol.77 (263), p.1425-1452 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss the impact of modal filtering in Legendre spectral methods, both on accuracy and stability. For the former, we derive sufficient conditions on the filter to recover high order accuracy away from points of discontinuity. Computational results confirm that less strict necessary conditions appear to be adequate. We proceed to discuss a instability mechanism in polynomial spectral methods and prove that filtering suffices to ensure stability. The results are illustrated by computational experiments. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/S0025-5718-08-02110-8 |