Loading…
The dimension of the Torelli group
We prove that the cohomological dimension of the Torelli group for a closed, connected, orientable surface of genus g \geq 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the cohomological dimension of the Johnson kernel (the...
Saved in:
Published in: | Journal of the American Mathematical Society 2010-01, Vol.23 (1), p.61-105 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the cohomological dimension of the Torelli group for a closed, connected, orientable surface of genus g \geq 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the cohomological dimension of the Johnson kernel (the subgroup of the Torelli group generated by Dehn twists about separating curves) to be 2g-3. For g \geq 2, we prove that the top dimensional homology of the Torelli group is infinitely generated. Finally, we give a new proof of the theorem of Mess that gives a precise description of the Torelli group in genus 2. The main tool is a new contractible complex, called the ``complex of minimizing cycles'', on which the Torelli group acts. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/S0894-0347-09-00643-2 |