Loading…
A restriction estimate using polynomial partitioning
If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p > 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.
Saved in:
Published in: | Journal of the American Mathematical Society 2016-04, Vol.29 (2), p.371-413 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p > 3.25 . The proof uses polynomial partitioning arguments from incidence geometry. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams827 |