Loading…
A global approach to the refinement of manifold data
A refinement of manifold data is a computational process, which produces a denser set of discrete data from a given one. Such refinements are closely related to multiresolution representations of manifold data by pyramid transforms, and approximation of manifold-valued functions by repeated refineme...
Saved in:
Published in: | Mathematics of computation 2017-01, Vol.86 (303), p.375-395 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A refinement of manifold data is a computational process, which produces a denser set of discrete data from a given one. Such refinements are closely related to multiresolution representations of manifold data by pyramid transforms, and approximation of manifold-valued functions by repeated refinements schemes. Most refinement methods compute each refined element separately, independently of the computations of the other elements. Here we propose a global method which computes all the refined elements simultaneously, using geodesic averages. We analyse repeated refinements schemes based on this global approach, and derive conditions guaranteeing strong convergence. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3087 |