Loading…

Average size of a self-conjugate (s,t)-core partition

Armstrong, Hanusa and Jones conjectured that if s,t-core partition and the average size of a self-conjugate (s,t) \frac {(s+t+1)(s-1)(t-1)}{24}-core partition equals \binom {s+1}{3}/2-core partitions and lattice paths in an \lfloor \frac {s}{2} \rfloor \times \lfloor \frac {t}{2}\rfloor -core partit...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2016-04, Vol.144 (4), p.1391-1399
Main Authors: Chen, William Y. C., Huang, Harry H. Y., Wang, Larry X. W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Armstrong, Hanusa and Jones conjectured that if s,t-core partition and the average size of a self-conjugate (s,t) \frac {(s+t+1)(s-1)(t-1)}{24}-core partition equals \binom {s+1}{3}/2-core partitions and lattice paths in an \lfloor \frac {s}{2} \rfloor \times \lfloor \frac {t}{2}\rfloor -core partition as conjectured by Armstrong, Hanusa and Jones.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/12729