Loading…

Free boundary minimal surfaces in the unit ball with low cohomogeneity

>< For each n\geq 3, we prove there is a unique nonplanar SO(n)-invariant free boundary minimal surface (a ``catenoid'') \Sigma _n \subset B^n(1). These surfaces generalize the ``critical catenoid'' in B^3(1) studied by Fraser and Schoen.]]>

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2017-04, Vol.145 (4), p.1671-1683
Main Authors: FREIDIN, BRIAN, GULIAN, MAMIKON, MCGRATH, PETER
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:>< For each n\geq 3, we prove there is a unique nonplanar SO(n)-invariant free boundary minimal surface (a ``catenoid'') \Sigma _n \subset B^n(1). These surfaces generalize the ``critical catenoid'' in B^3(1) studied by Fraser and Schoen.]]>
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13424