Loading…

Simple Lie groups without the Approximation Property II

We prove that the universal covering group \widetilde {\mathrm {Sp}}(2,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R}) \mathrm {SL}(3,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R})-spaces associated with lattices in \widetilde {\mathrm {Sp}}(2,\mathbb{R})-spaces associated with lattices in any connected simple Lie g...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2016-06, Vol.368 (6), p.3777-3809
Main Authors: Haagerup, Uffe, de Laat, Tim
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that the universal covering group \widetilde {\mathrm {Sp}}(2,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R}) \mathrm {SL}(3,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R})-spaces associated with lattices in \widetilde {\mathrm {Sp}}(2,\mathbb{R})-spaces associated with lattices in any connected simple Lie group.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6448