Loading…
Simple Lie groups without the Approximation Property II
We prove that the universal covering group \widetilde {\mathrm {Sp}}(2,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R}) \mathrm {SL}(3,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R})-spaces associated with lattices in \widetilde {\mathrm {Sp}}(2,\mathbb{R})-spaces associated with lattices in any connected simple Lie g...
Saved in:
Published in: | Transactions of the American Mathematical Society 2016-06, Vol.368 (6), p.3777-3809 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the universal covering group \widetilde {\mathrm {Sp}}(2,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R}) \mathrm {SL}(3,\mathbb{R}) \mathrm {Sp}(2,\mathbb{R})-spaces associated with lattices in \widetilde {\mathrm {Sp}}(2,\mathbb{R})-spaces associated with lattices in any connected simple Lie group. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6448 |