Loading…
Spectral flow is a complete invariant for detecting bifurcation of critical points
To be more precise, let I \lambda _0 an open ball about the origin of a real, separable Hilbert space H. \psi \colon I\times B\to \ R functions. For \lambda \in I, \nabla _x\psi (\lambda ,0)=0, \mathop {\rm Hessian}\nolimits _x\psi (\lambda ,\,0)\equiv L_\lambda . is invertible if \lambda \ne \lambd...
Saved in:
Published in: | Transactions of the American Mathematical Society 2016-06, Vol.368 (6), p.4439-4459 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To be more precise, let I \lambda _0 an open ball about the origin of a real, separable Hilbert space H. \psi \colon I\times B\to \ R functions. For \lambda \in I, \nabla _x\psi (\lambda ,0)=0, \mathop {\rm Hessian}\nolimits _x\psi (\lambda ,\,0)\equiv L_\lambda . is invertible if \lambda \ne \lambda _0 L_{\lambda _0} L\colon I\to {\mathcal L}(H) \lambda _0 (\lambda _0,\,0) (\lambda ,\,x), for which \nabla _x\psi (\lambda ,x)=0. L\colon I\to {\mathcal L}(H) is invertible for \lambda \ne \lambda _0, L_{\lambda _0} L\colon I\to {\mathcal L}(H) \lambda _0 that contains the point \lambda _0 about the origin, and a family \psi \colon J\times B\to \ R functions such that, for each \lambda \in J, \nabla _x\psi (\lambda ,0)=0 \mathop {\rm Hessian}\nolimits _x\psi (\lambda ,\,0)= L_\lambda , \nabla _x\psi (\lambda ,x)\ne 0 Therefore, at an isolated singular point of the path of linearizations of the gradient, under the sole further assumption that the linearization at the singular point is Fredholm, spectral flow is a complete invariant for the detection of bifurcation of nontrivial critical points.]]> |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6474 |