Loading…
A grounded analysis of experts’ decision-making during security assessments
Abstract Security analysis requires specialized knowledge to align threats and vulnerabilities in information technology. To identify mitigations, analysts need to understand how threats, vulnerabilities, and mitigations are composed together to yield security requirements. Despite abundant guidance...
Saved in:
Published in: | Journal of cybersecurity (Oxford) 2016-12, Vol.2 (2), p.147-163 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Security analysis requires specialized knowledge to align threats and vulnerabilities in information technology. To identify mitigations, analysts need to understand how threats, vulnerabilities, and mitigations are composed together to yield security requirements. Despite abundant guidance in the form of checklists and controls about how to secure systems, evidence suggests that security experts do not apply these checklists. Instead, they rely on their prior knowledge and experience to identify security vulnerabilities. To better understand the different effects of checklists, design analysis, and expertise, we conducted a series of interviews to capture and encode the decision-making process of security experts and novices during three security analysis exercises. Participants were asked to analyze three kinds of artifacts: source code, data flow diagrams, and network diagrams, for vulnerabilities, and then to apply a requirements checklist to demonstrate their ability to mitigate vulnerabilities. We framed our study using Situation Awareness, which is a theory about human perception that was used to elicit interviewee responses. The responses were then analyzed using coding theory and grounded analysis. Our results include decision-making patterns that characterize how analysts perceive, comprehend, and project future threats against a system, and how these patterns relate to selecting security mitigations. Based on this analysis, we discovered new theory to measure how security experts and novices apply attack models and how structured and unstructured analysis enables increasing security requirements coverage. We highlight the role of expertise level and requirements composition in affecting security decision-making and we discuss how our method produced new hypotheses about security analysis and decision-making. |
---|---|
ISSN: | 2057-2085 2057-2093 |
DOI: | 10.1093/cybsec/tyw010 |