Loading…

P2585Cardiac dysfunction after myocardial infarction: role of pro-inflammatory extracellular vesicles

Abstract Background Myocardial infarction (MI) is associated with significant loss of cardiomyocytes (CM), which are replaced by a fibrotic scar. Necrotic CM release damage-associated proteins that stimulate innate immune pathways and macrophages (MΦ) tissue infiltration, which drives to the progres...

Full description

Saved in:
Bibliographic Details
Published in:European heart journal 2019-10, Vol.40 (Supplement_1)
Main Authors: Biemmi, V, Milano, G, Ciullo, A, Cervio, E, Dei Cas, M, Paroni, R, Tallone, T, Pedrazzini, G, Moccetti, T, Longnus, S L, Vassalli, G, Barile, L
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Myocardial infarction (MI) is associated with significant loss of cardiomyocytes (CM), which are replaced by a fibrotic scar. Necrotic CM release damage-associated proteins that stimulate innate immune pathways and macrophages (MΦ) tissue infiltration, which drives to the progression of inflammation and myocardial remodeling process. Both, loss of CM and inflammatory response are determinants of the long term ventricle remodeling and heart failure. Circulating inflammatory extracellular vesicles (EV) play a crucial role in the acute and chronic phases of MI, in terms of inflammatory progression. In this study we examined whether reducing the generation of inflammatory EV within few hours from the ischemic event may ameliorate cardiac outcome at short and long time-point in LAD rat model. Methods Before coronary artery ligation, rats were injected IP with a chemical inhibitor of neutral sphingomyelinase (nSMase) which is essential for the biogenesis and release of EVs. The number and size profile of plasma-derived EV was assessed by NTA analysis at baseline and 24hrs after MI. Multiple EV cytokine levels were simultaneously determined using enzyme-linked immunosorbent assay (ELISA)-based protein array technology. Heart global function was assessed by echocardiography and hemodynamic analysis performed at 7, 14 and 28 days after MI. Cytotoxic effects of circulating EV were evaluated ex-vivo in a Langedorff, system by measuring the level of cardiac troponin I (cTnI) in the perfusate. Mechanisms undergoing cytotoxic effects of EV derived from pro-inflammatory MΦ (MΦM1) were studied in vitro into primary rat neonatal CM. Results The induction of MI and the consequent inflammation, dramatically increase the number of circulating EV carrying inflammatory cytokines such as IL1α, ILβ and Rantes. Preventive inhibition nSMase significantly reduced the boost of inflammatory EV and cytokines in treated group as compared to control animals. The reduction of circulating EV post MI results in preserved LV ejection fraction at 7 and 28 days post-MI as compared to control group. Hemodynamic analysis confirmed functional recovery by displaying a higher velocity of LV relaxation and an improved contractility capacity in treated versus control group. The number of infiltrating CD68+ monocytes/macrophages in the infarct area was significantly reduced. Post-MI circulating EV induce cell death in adult CM when added to the perfusate of Langendorff, as assessed
ISSN:0195-668X
1522-9645
DOI:10.1093/eurheartj/ehz748.0911