Loading…

Joint Gramian inversion of geophysical data with different resolution capabilities: case study in Yellowstone

SUMMARY Joint inversion of multiphysics data is a practical approach to the integration of geophysical data, which produces models of reduced uncertainty and improved resolution. The development of effective methods of joint inversion requires considering different resolutions of different geophysic...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2021-08, Vol.226 (2), p.1058-1085
Main Authors: Tu, Xiaolei, Zhdanov, Michael S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY Joint inversion of multiphysics data is a practical approach to the integration of geophysical data, which produces models of reduced uncertainty and improved resolution. The development of effective methods of joint inversion requires considering different resolutions of different geophysical methods. This paper presents a new framework of joint inversion of multiphysics data, which is based on a novel formulation of Gramian constraints and mitigates the difference in resolution capabilities of different geophysical methods. Our approach enforces structural similarity between different model parameters through minimizing a structural Gramian term, and it also balances the different resolutions of geophysical methods using a multiscale resampling strategy. The effectiveness of the proposed method is demonstrated by synthetic model study of joint inversion of the P-wave traveltime and gravity data. We apply a novel method based on Gramian constraints and multiscale resampling to jointly invert the gravity and seismic data collected in Yellowstone national Park to image the crustal magmatic system of the Yellowstone. Our results helped to produce a consistent image of the crustal magmatic system of the Yellowstone expressed both in low-density and low-velocity anomaly just beneath the Yellowstone caldera.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggab131