Loading…

Early seafloor spreading in the South Atlantic: new evidence for M-series magnetochrons north of the Rio Grande Fracture Zone

Recent tectonic reconstructions of the South Atlantic have partitioned the ocean basin into several segments based upon one or more proposed intraplate South American deformation zones. In several of these reconstructions, opening of the southern segment(s) by seafloor spreading prior to Aptian-Albi...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2016-08, Vol.206 (2), p.835-844
Main Authors: Bird, Dale E., Hall, Stuart A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent tectonic reconstructions of the South Atlantic have partitioned the ocean basin into several segments based upon one or more proposed intraplate South American deformation zones. In several of these reconstructions, opening of the southern segment(s) by seafloor spreading prior to Aptian-Albian time is accompanied by contemporaneous strike-slip motion along an intraplate boundary extending southeastward from the Andean Cochabamba—Santa Cruz bend to the Rio Grande Fracture Zone (RGFZ). We have examined new magnetic data over the Pelotas, Santos and Campos Basins, offshore Argentina and Brazil, acquired by ION-GXT in tandem with long-offset, long record seismic reflection data, and identified seafloor spreading anomalies M4, M3, M2 and M0 (∼131, ∼129, ∼128 and ∼125 Ma). Integrating these results with our earlier work, we have been able to correlate magnetochrons M4, M3, M2 and M0 north and south of the RGFZ on the South American margin, and north and south of the Walvis Ridge on the African side. Our results are therefore inconsistent with diachronous opening models that involve substantial continental strike-slip motion north of RGFZ during M4 to M0 time. Although the ocean basin may have opened from south to north, our results indicate that seafloor spreading began north of the RGFZ earlier than previously proposed.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggw147