Loading…

Accurately computing the log-sum-exp and softmax functions

Evaluating the log-sum-exp function or the softmax function is a key step in many modern data science algorithms, notably in inference and classification. Because of the exponentials that these functions contain, the evaluation is prone to overflow and underflow, especially in low-precision arithmet...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis 2021-10, Vol.41 (4), p.2311-2330
Main Authors: Blanchard, Pierre, Higham, Desmond J, Higham, Nicholas J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaluating the log-sum-exp function or the softmax function is a key step in many modern data science algorithms, notably in inference and classification. Because of the exponentials that these functions contain, the evaluation is prone to overflow and underflow, especially in low-precision arithmetic. Software implementations commonly use alternative formulas that avoid overflow and reduce the chance of harmful underflow, employing a shift or another rewriting. Although mathematically equivalent, these variants behave differently in floating-point arithmetic and shifting can introduce subtractive cancellation. We give rounding error analyses of different evaluation algorithms and interpret the error bounds using condition numbers for the functions. We conclude, based on the analysis and numerical experiments, that the shifted formulas are of similar accuracy to the unshifted ones, so can safely be used, but that a division-free variant of softmax can suffer from loss of accuracy.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/draa038