Loading…
Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations
We develop a discrete counterpart of the De Giorgi–Nash–Moser theory, which provides uniform Hölder-norm bounds on continuous piecewise affine finite element approximations of second-order linear elliptic problems of the form $-\nabla \cdot (A\nabla u)=f-\nabla \cdot F$ with $A\in L^\infty (\varOmeg...
Saved in:
Published in: | IMA journal of numerical analysis 2021-07, Vol.41 (3), p.1846-1898 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a discrete counterpart of the De Giorgi–Nash–Moser theory, which provides uniform Hölder-norm bounds on continuous piecewise affine finite element approximations of second-order linear elliptic problems of the form $-\nabla \cdot (A\nabla u)=f-\nabla \cdot F$ with $A\in L^\infty (\varOmega ; {{\mathbb{R}}}^{n\times n})$ a uniformly elliptic matrix-valued function, $f\in L^{q}(\varOmega )$, $F\in L^p(\varOmega ; {{\mathbb{R}}}^n)$, with $p> n$ and $q> n/2$, on $A$-nonobtuse shape-regular triangulations, which are not required to be quasi-uniform, of a bounded polyhedral Lipschitz domain $\varOmega \subset {{\mathbb{R}}}^n$. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drab029 |