Loading…
Deformation Theory of the Trivial mod p Galois Representation for GLn
We study the rigid generic fiber $\mathcal{X}^\square _{\overline \rho }$ of the framed deformation space of the trivial representation $\overline \rho : G_K \to \textrm{GL}_n(k)$ where $k$ is a finite field of characteristic $p>0$ and $G_K$ is the absolute Galois group of a finite extension $K/\...
Saved in:
Published in: | International mathematics research notices 2020-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the rigid generic fiber $\mathcal{X}^\square _{\overline \rho }$ of the framed deformation space of the trivial representation $\overline \rho : G_K \to \textrm{GL}_n(k)$ where $k$ is a finite field of characteristic $p>0$ and $G_K$ is the absolute Galois group of a finite extension $K/\textbf{Q}_p$. Under some mild conditions on $K$ we prove that $\mathcal{X}^\square _{\overline \rho }$ is normal. When $p> n$ we describe its irreducible components and show Zariski density of its crystalline points. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnaa011 |