Loading…

Binomial Edge Ideals of Weakly Closed Graphs

Closed graphs have been characterized by Herzog et al. as the graphs whose binomial edge ideals have a quadratic Gröbner basis with respect to a diagonal term order. In this paper, we focus on a generalization of closed graphs, namely weakly closed graphs (or co-comparability graphs). Building on so...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2023-12, Vol.2023 (24), p.22045-22068
Main Author: Seccia, Lisa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Closed graphs have been characterized by Herzog et al. as the graphs whose binomial edge ideals have a quadratic Gröbner basis with respect to a diagonal term order. In this paper, we focus on a generalization of closed graphs, namely weakly closed graphs (or co-comparability graphs). Building on some results about Knutson ideals of generic matrices, we characterize weakly closed graphs as the only graphs whose binomial edge ideals are Knutson ideals for a certain polynomial $f$. In doing so, we re-prove Matsuda’s theorem about the F-purity of binomial edge ideals of weakly closed graphs in positive characteristic and we extend it to generalized binomial edge ideals. Furthermore, we give a characterization of weakly closed graphs in terms of the minimal primes of their binomial edge ideals and we characterize all minimal primes of Knutson ideals for this choice of $f$.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac346