Loading…
Existence of Solutions on the Critical Hyperbola for a Pure Lane–Emden System with Neumann Boundary Conditions
Abstract We study the following Lane–Emden system: $$\begin{align*} & -\Delta u=|v|^{q-1}v \quad \ \textrm{in}\ \Omega, \qquad -\Delta v=|u|^{p-1}u \quad \ \textrm{in}\ \Omega, \qquad u_{\nu}=v_{\nu}=0 \quad \ \textrm{on}\ \partial \Omega, \end{align*}$$with $\Omega $ a bounded regular domain of...
Saved in:
Published in: | International mathematics research notices 2024-01, Vol.2024 (1), p.745-803 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We study the following Lane–Emden system: $$\begin{align*} & -\Delta u=|v|^{q-1}v \quad \ \textrm{in}\ \Omega, \qquad -\Delta v=|u|^{p-1}u \quad \ \textrm{in}\ \Omega, \qquad u_{\nu}=v_{\nu}=0 \quad \ \textrm{on}\ \partial \Omega, \end{align*}$$with $\Omega $ a bounded regular domain of ${\mathbb{R}}^{N}$, $N \ge 4$, and exponents $p, q$ belonging to the so-called critical hyperbola $1/(p+1)+1/(q+1)=(N-2)/N$. We show that, under suitable conditions on $p, q$, least-energy (sign-changing) solutions exist, and they are classical. In the proof we exploit a dual variational formulation, which allows to deal with the strong indefinite character of the problem. We establish a compactness condition which is based on a new Cherrier-type inequality. We then prove such condition by using as test functions the solutions to the system in the whole space and performing delicate asymptotic estimates. If $N \ge 5$, $p=1$, the system above reduces to a biharmonic equation, for which we also prove existence of least-energy solutions. Finally, we prove some partial symmetry and symmetry-breaking results in the case $\Omega $ is a ball or an annulus. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad145 |