Loading…
Riemannian Groupoids and Solitons for Three-Dimensional Homogeneous Ricci and Cross-Curvature Flows
In this paper, we investigate the behavior of three-dimensional homogeneous solutions of the cross-curvature flow using Riemannian groupoids. The Riemannian groupoid technique, originally introduced by J. Lott, allows us to investigate the long-term behavior of collapsing solutions of the flow, prod...
Saved in:
Published in: | International mathematics research notices 2008-01, Vol.2008 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the behavior of three-dimensional homogeneous solutions of the cross-curvature flow using Riemannian groupoids. The Riemannian groupoid technique, originally introduced by J. Lott, allows us to investigate the long-term behavior of collapsing solutions of the flow, producing solitons in the limit. We also review Lott's results on the long-term behavior of three-dimensional homogeneous solutions of Ricci flow, demonstrating the coordinates we choose and reviewing the groupoid technique. We find cross-curvature soliton metrics on Sol and Nil, and show that the cross-curvature flow of SL(2,R) limits to Sol. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnn034 |