Loading…
Properly embedded minimal annuli in $\mathbb{S}^2 \times \mathbb{R}
Abstract We prove that every properly embedded minimal annulus in $\mathbb{S}^2\times\mathbb{R}$ is foliated by circles. We show that such minimal annuli are given by periodic harmonic maps $\mathbb{C} \to \mathbb{S}^2$ of finite type. Such harmonic maps are parameterized by spectral data, and we sh...
Saved in:
Published in: | Journal of Integrable Systems 2020-01, Vol.5 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We prove that every properly embedded minimal annulus in $\mathbb{S}^2\times\mathbb{R}$ is foliated by circles. We show that such minimal annuli are given by periodic harmonic maps $\mathbb{C} \to \mathbb{S}^2$ of finite type. Such harmonic maps are parameterized by spectral data, and we show that continuous deformations of the spectral data preserve the embeddedness of the corresponding annuli. A curvature estimate of Meeks and Rosenberg is used to show that each connected component of spectral data of embedded minimal annuli contains a maximum of the flux of the third coordinate. A classification of these maxima allows us to identify the spectral data of properly embedded minimal annuli with the spectral data of minimal annuli foliated by circles. |
---|---|
ISSN: | 2058-5985 2058-5985 |
DOI: | 10.1093/integr/xyaa005 |